A new handheld capacitive sensor to measure snow density and liquid water content

Motivation

+ Snow density (p) and its liquid water content (LWC) is crucial for any physical process within the snowpack + Capacitive sensors measuring the permittivity of snow (ε) to deduce ρ and LWC works well (Denoth, 1989; Eq. 1 & 2) + BUT instruments are not commercially available, e.g. the "Denoth" sensors \rightarrow We developed a new capacitive sensor (NCS) to measure ρ and LWC aiming to produce a small batch series \rightarrow For evaluation – ε , ρ , LWC revealed from NCS were compared to values from a Denoth sensor and volume weighing (ρ_{cutter})

 $\epsilon = 1 + 1.92 \cdot \rho_{dry} + 0.44 \cdot \rho_{drv}^2 \quad (1)$

Evaluation

13 dry and wet snow profiles – ε_{NCS} vs. ε_{denoth} (Fig. 4): + Rel. RMSE_{ε} = 11.9 %; r = 0.84; ε_{NCS} = (0.97 ± 0.05) ε_{denoth} + (0.07 ± 0.1) + Sensors agreed well - but deviations increased with higher values

Single snow profiles – ε_{NCS} vs. ε_{denoth} (Fig. 5 & 8):

- + Rel. RMSE_{ε} = 3...26 %; average rel. RMSE_{ε} = 9.7 %
- + 12 out of 13 ε -profiles correlated well: r = 0.61...0.92
- + Larger deviations for very wet snow or due to horizontal misalignments

Comparing methods – dielectric density vs. volume weighing (Fig. 6):

- + Dielectric density calculated from Denoth's empirical function (Eq. 1):
- + RMSE_{o-drv} = 62 kg m⁻³ (19.7 %); r = 0.75; ρ_{NCS} = (0.7 ± 0.08) ρ_{cutter} + (84 ± 26)
- + Bias (underestimation) increased for $\rho > 200$ kg m⁻³

Laboratory measurements (Fig. 7):

- + Rel. RMSE = 2.9 % (0.079); r = 0.997; ε_{NCS} = (1.08 ± 0.08) ε_{denoth} (0.24 ± 0.23)
- + Reproducibility on same snow samples: 0.02 to 0.1 (denoth) vs. 0.02 to 0.13 (NCS)
- + LWC calculated from Denoth (1989; Eq. 2): LWC_{NCS} = -0.3...9 vol.%; LWC_{denoth} = 0...8.4 vol.% $\frac{1}{2}$
- + Error propagation: $\Delta \varepsilon = 0.1 \rightarrow \Delta LWC = 0.4 \text{ vol.}\%$; $\Delta \rho = -20 \text{ kg m}^{-3} \rightarrow \Delta LWC = 0.2 \text{ vol.}\%$

Discussion

+ NCS measured the snow's permittivity validly and reliably compared to an established instrument + ε_{NCS} and ε_{denoth} deviated in the upper measurement range - unclear if caused by different dielectric calibrations? + **ρ_{cutter} were systematically higher** than ρ_{NCS} and ρ_{denoth} - maybe due to a poor snow-sensor contact, or limitations of the ρ-ε model? -> Efforts on the dielectric calibration & the empirical ρ-ε and LWC-ε models are needed to improve estimates revealed from the NCS

Fabian Wolfsperger¹, Michel Geisser¹, Silvio Ziegler² and Henning Löwe¹ ¹ WSL-Institute for Snow and Avalanche Research SLF, Switzerland ² FPGA Company GmbH, Switzerland

WSL-Institute for Snow and Avalanche Research SLF | Wolfsperger, F., Geisser, M., Ziegler, S., Löwe, H. | wolfsperger@slf.ch | 9th Oct. 2023