Alpine Environment and Natural Hazards

We analyze the impacts of climate change and extreme events on physical and ecological processes and process chains in mountain regions and the associated natural hazards and emerging risks. Our research enables a better understanding of the changing processes, the identification of complex system interactions and thus the early detection and assessment of the most important impacts on the environment and society. The specific thematic focus and core competencies required are formed by the five research groups Permafrost, RAMMS Rapid Mass Movements, Mountain Ecosystems, Alpine Remoste Sensing, and Alpine Mass Movements. Inter- and transdisciplinary research with other research units of WSL, national and international research institutions and practice is essential for us.

To achieve our goals, we use a wide range of methods and approaches. These include state-of-the-art sensors (e.g. LiDAR, thermal and multispectral), processing technologies as well as the development of prototypes and specially tailored techniques (e.g. for the analysis of data from satellites, drones and ground-based systems). Long-term monitoring systems (permafrost and biodiversity), and small- to large-scale field experiments (e.g. rockfall in combination with protective forest) form the basis for development of our numerical models developed for science and practice (e.g. RAMMS). To generate plausible scenarios for the future development of the alpine environment, we link our models with climate and extreme weather scenarios from numerical climate and weather models.

Our research unit Alpine Environment and Natural Hazards was formed in July 2021 as part of the establishment of CERC (Climate Change, Extremes and Natural Hazards in Alpine Regions Research Centre) and covers four of CERC's six thematic areas.

 

Brief insight into our research activities

Recording snow depths using drones

To plan avalanche protection measures and assess their effectiveness, snow depth distribution in high alpine terrain is mapped using drones and aircraft. In collaboration with cantonal and local authorities, we have developed a method that derives the snow depth distribution from the difference between snow-covered and snow-free digital elevation models.

Simulation of rock-ice avalanches

Recent natural disasters such as Pizzo Cengalo (Grisons, Switzerland) or Chamoli (India) have shown how dangerous the transition of rock and ice avalanches into secondary processes such as debris flows can be. We developed a model that considers ice melt, the transition from solid to liquid, and the entrainment of highly saturated rock fall deposits. The model has wide national and international applications, for example in cooperation with SDC, UNDP or UNESCO.

Biodiversity in cold regions under changing climate

Building on our experience with long-term monitoring of changes in plant species in mountain regions, we have expanded this to include more integrative ecosystem research, focusing on animal biodiversity, below- and above-ground interactions, and elevational gradients across tree boundaries. In addition, activities with regional authorities (e.g. investigating 100 years of flora change in Graubünden) have been strengthened.

Long-term observations in permafrost

We maintain a long-term observation network for permafrost in the Swiss Alps as part of the Swiss Permafrost Monitoring Network (PERMOS) and the Global Terrestrial Network for Permafrost (GTN-P). Permafrost characteristics, including ground temperature and rock glacier velocity, are among the Essential Climate Variables (ECV) as defined by the United Nations Framework Convention on Climate Change (UNFCCC).

 

Research Groups and Staff

Alpine Environment and Natural Hazards

Nadine Salzmann

Head of Research Unit

Alpine Remote Sensing

Yves Bühler

Group leader

Noel Boos

Temporary employee

Felix Breuer

Bachelor student

Gwendolyn Dasser

PhD student guest

Julia Glaus

PhD student

Elisabeth Hafner

PhD student

Andrea Manconi

Scientific staff member

Janick Matter

Master student

Jessica Munch

Scientific staff member

Pia Ruttner-Jansen

PhD student

Andreas Stoffel

System specialist

Rushan Wang

PhD student

Alpine Mass Movements

Johan Gaume

Group leader / Joint Professorship

Lars Blatny

Postdoc

Franziska Bründl

Master student

Tiziano Di Pietro

Scientific staff member

Philipp Christian Friess

PhD student

Camille Huitorel

PhD student

Johann Kammholz

PhD student guest

Mikkel Metzsch Jensen

PhD student

Livia Pierhöfer

PhD student

Lara Roffmann

Administrative staff member

Hervé Vicari

Scientific staff member

Mountain Ecosystems

Peter Bebi

Group leader

Theresa Banzer

Assistante scientifique

Marisa Boos

Trainee

Julien Leon Bota

PhD student

Alessandra Bottero

Scientific staff member

Leon Bührle

Visiting scientist

Esther Frei

Scientific staff member

Andreas Gygax

Visiting scientist

Wouter Hantson

Postdoc

Kevin Patrick Helzel

IT specialist

Ingrid Jansen

Technical staff member

Anne Kempel

Scientific staff member

Léon Lepesant

Trainee

Tomoki Loeillot

Trainee

Christian Rixen

Senior Scientist

Nils Roling

Trainee

Giacomo Savioni

Master student

Jonas Schwaab

Scientific staff member

Raphael von Büren

PhD student guest

Sonja Wipf

Visiting scientist

Michael Zehnder

PhD student

Jeronimo Zürcher

Master student

Permafrost

Marcia Phillips

Group leader

Alexander Bast

Scientific staff member

Robert Kenner

Scientific staff member

Matthias Lichtenegger

PhD student

Jeannette Nötzli

Scientific staff member

Livia Pierhöfer

PhD student

Samuel Weber

Scientific staff member

RAMMS Rapid Mass Movements

Perry Bartelt

Group leader

Joël Borner

Technical staff member

Marc Christen

Visiting scientist

Adrian Ringenbach

Visiting scientist

Yu Zhuang

Postdoc